Tableof Contents

1. WAVENATURE OF LIGHT

1.1 Light Waves in a Homogeneous Medium

A. Plane Electromagnetic Wave

B. Maxwell's Wave Equation and Diverging Waves

Example 1.1.1: A diverging laser beam

1.2 Refractive Index

Example 1.2.1: Relative permittivity and refractive index

1.3 Group Velocity and Group Index

Example 1.3.1: Group velocity

Example 1.3.2: Group and phase velocities

1.4 Magnetic Field, Irradiance and Poynting Vector

Example 1.4.1: Electric and magnetic fields in light

1.5 Snell's Law and Total Internal Reflection (TIR)

1.6 Fresnel's Equations

A. Amplitude Reflection and Transmission Coefficients

Example 1.6.1: Evanescent wave

B. Intensity, Reflectance and Transmittance

Example 1.6.2: Reflection of light from a less dense medium

Example 1.6.3: Reflection at normal incidence. Internal and external reflection

Example 1.6.4: Antireflection coatings on solar cells

Example 1.6.5: Dielectric mirrors

1.7 Multiple Interference and Optical Resonators

Example 1.7.1: Resonator modes and spectral width

1.8 Goos-Hänchen Shift and Optical Tunneling

1.9 Temporal and Spatial Coherence

1.10 Diffraction Principles

A. Fraunhofer Diffraction

Example 1.10.1: Resolving power of imaging systems

B. Diffraction grating

Questions and Problems

2. DIELECTRICWAVEGUIDES AND OPTICAL FIBERS

2.1 Symmetric Planar Dielectric Slab Waveguide

A. Waveguide Condition

B. Single and Multimode Waveguides

C. TE and TM Modes

Example 2.1.1: Waveguide modes

Example 2.1.2: V-number and the number of modes

Example 2.1.3: Mode field distance (MFD)

2.2 Modal and Waveguide Dispersion in the Planar Waveguide

A. Waveguide Dispersion Diagram

B. Intermodal dispersion

C. Intramodal Dispersion

2.3 Step Index Fiber

Example 2.3.1: A multimode fiber

Example 2.3.2: A single mode fiber

Example 2.3.3: Single mode cut-off wavelength

Example 2.3.4: Group velocity and delay

2.4 Numerical Aperture

Example 2.4.1: A multimode fiber and total acceptance angle

Example 2.4.2: A single mode fiber

2.5 Dispersion in Single Mode Fibers

A. Material Dispersion

B. Waveguide Dispersion

C. Chromatic Dispersion or Total Dispersion

D. Profile and Polarization Dispersion Effects

E. Dispersion Flattened Fibers

Example 2.5.1: Material Dispersion

Example 2.5.2: Material, waveguide and chromatic dispersion

2.6 Bit-Rate, Dispersion, Electrical and Optical Bandwidth

A. Bit-Rate and Dispersion

B. Optical and Electrical Bandwidth

Example 2.6.1: Bit-rate and dispersion

2.7 The Graded Index Optical Fiber

Example 2.7.1: Dispersion in a graded-index fiber and bit-rate

2.8 Light Absorption and Scattering

A. Absorption

B. Scattering

2.9 Attenuation in Optical Fibers

Example 2.9.1: Rayleigh scattering limit

Example 2.9.2: Attenuation along an optical fiber

2.10 Fiber Manufacture

A. Fiber Drawing

B. Outside Vapor Deposition (OVD)

Example 2.10.1: Fiber drawing

Questions and Problems

3.SEMICONDUCTOR SCIENCE AND LIGHT EMITTING DIODES

3.1 Semiconductor Concepts and Energy Bands

A. Energy Band Diagrams

B. Semiconductor Statistics

C. Extrinsic Semiconductors

D. Compensation Doping

E. Degenerate and Nondegenerate Semiconductors

F. Energy Band Diagrams in an Applied Field

Example 3.1.1: Fermi levels in semiconductors

Example 3.1.2: Conductivity

3.2 Direct and Indirect Bandgap Semiconductors: E-k Diagrams

3.3 pn Junction Principles

A. Open Circuit

B. Forward Bias

C. Reverse Bias

D. Depletion Layer Capacitance

E. Recombination Lifetime

Example 3.3.1: A direct band gap pn junction

3.4 The pn Junction Band Diagram

A. Open Circuit

B. Forward and Reverse Bias

3.5 Light Emitting Diodes

A. Principles

B. Device Structures

3.6 LED Materials

3.7 Heterojunction High Intensity LEDs

3.8 LED Characteristics

Example 3.8.1: LED Output Spectrum

Example 3.8.2: LED output wavelength variations

Example 3.8.3: InGaAsP on InP substrate

3.9 LEDs for Optical Fiber Communications

Questions and Problems

4. STIMULATEDEMISSION DEVICES LASERS

4.1 Stimulated Emission and Photon Amplification

4.2 Stimulated Emission Rate and Einstein Coefficients

4.3 Optical Fiber Amplifiers

4.4 Gas Laser: The He-Ne Laser

Example 4.4.1: Efficiency of the He-Ne Laser

Example 4.4.2: Laser beam divergence

4.5 The Output Spectrum of a Gas Laser

Example 4.5.1: Doppler broadened linewidth

4.6 LASER Oscillation Conditions

A. Optical Gain Coefficient g

B. Threshold Gain gth

C. Phase Condition and Laser Modes

Example 4.6.1: Threshold population inversion for the He-Ne laser

4.7 Principle of the Laser Diode

4.8 Heterostructure Laser Diodes

Example 4.8.1: Modes in a laser and the optical cavity length

4.9 Elementary Laser Diode Characteristics

Example 4.9.1: Laser output wavelength variations

4.10 Steady State Semiconductor Rate Equation

4.11 Light Emitters for Optical Fiber Communications

4.12 Single Frequency Solid State Lasers

Example 4.12.1: DFB Laser

4.13 Quantum Well Devices

Example 4.13.1: A GaAs quantum well

4.14 Vertical Cavity Surface Emitting Lasers (VCSELs)

4.15 Optical Laser Amplifiers

4.16 Holography

Questions and Problems

5.PHOTODETECTORS

5.1 Principle of the pn Junction Photodiode

5.2 Ramo's Theorem and External Photocurrent

5.3 Absorption Coefficient and Photodiode Materials

5.4 Quantum Efficiency and Responsivity

5.5 The pin Photodiode

Example 5.5.1: Operation and speed of a pin photodiode

Example 5.5.2: Photocarrier Diffusion in a pin photodiode

Example 5.5.3: Responsivity of a pin photodiode

5.6 Avalanche Photodiode

Example 5.6.1: InGaAs APD Responsivity

Example 5.6.2: Silicon APD

5.7 Heterojunction Photodiodes

A. Separate Absorption and Multiplication (SAM) APD

B. Superlattice APDs

5.8 Phototransistors

5.9 Photoconductive Detectors and Photoconductive Gain

5.10 Noise In Photodetectors

A. The pn Junction and the pin Photodiodes

Example 5.10.1: NEP of a Si pin Photodiode

Example 5.10.2: Noise of an ideal photodetector

Example 5.10.3: SNR of a Receiver

B. Avalanche Noise in the APD

Example 5.10.4: Noise in an APD

Questions and Problems

6.PHOTOVOLTAIC DEVICES

6.1 Solar Energy Spectrum

Example 6.1.1: Solar energy conversion

6.2 Photovoltaic Device Principles

Example 6.2.1: The photocurrent Iph

6.3 pn Junction Photovoltaic I-V Characteristics

Example 6.3.1: A solar cell driving a resistive load

Example 6.3.2: Open circuit voltage and illumination

6.4 Series Resistance and Equivalent Circuit

Example 6.4.1: Solar cells in parallel

6.5 Temperature Effects

6.6 Solar Cells Materials, Devices and Efficiencies

Questions and Problems

7.POLARIZATION AND MODULATION OF LIGHT

7.1 Polarization

A. State of Polarization

Example 7.1.1: Elliptical and circular polarization

B. Malus's Law

7.2 Light Propagation in an Anisotropic Medium: Birefringence

A. Optical Anisotropy

B. Uniaxial Crystals and Fresnel's Optical Indicatrix

C. Birefringence of Calcite

D. Dichroism

7.3 Birefringent Optical Devices

A. Retarding Plates

Example 7.3.1: Quartz half-wave plate

Example 7.3.2: Circular polarization from linear polarization

B. Soleil-Babinet Compensator

C. Birefringent Prisms

7.4 Optical Activity and Circular Birefringence

7.5 Electro-Optic Effects

A. Definitions

B. Pockels Effect

Example 7.5.1: Pockels Cell Modulator

C. Kerr Effect

Example 7.5.2: Kerr Effect Modulator

7.6 Integrated Optical Modulators

A. Phase and Polarization Modulation

B. Mach-Zehnder Modulator

C. Coupled Waveguide Modulators

Example 7.6.1: Modulated Directional Coupler

7.7 Acousto-Optic Modulator

Example 7.7.1: Modulated Directional Coupler

7.8 Magneto-Optic Effects

7.9 Non-Linear Optics and Second Harmonic Generation

Questions and Problems

PHYSICAL CONSTANTS

PROPERTIES OF SELECTED SEMICONDUCTORS AT 300K

SELECTED SEMICONDUCTORS

NOTATION AND ABBREVIATIONS

INDEX