Tableof Contents
1.1 Light Waves in a Homogeneous Medium
A. Plane Electromagnetic Wave
B. Maxwell's Wave Equation and Diverging Waves
Example 1.1.1: A diverging laser beam
1.2 Refractive Index
Example 1.2.1: Relative permittivity and refractive index
1.3 Group Velocity and Group Index
Example 1.3.1: Group velocity
Example 1.3.2: Group and phase velocities
1.4 Magnetic Field, Irradiance and Poynting Vector
Example 1.4.1: Electric and magnetic fields in light
1.5 Snell's Law and Total Internal Reflection (TIR)
1.6 Fresnel's Equations
A. Amplitude Reflection and Transmission Coefficients
Example 1.6.1: Evanescent wave
B. Intensity, Reflectance and Transmittance
Example 1.6.2: Reflection of light from a less dense medium
Example 1.6.3: Reflection at normal incidence. Internal and external reflection
Example 1.6.4: Antireflection coatings on solar cells
Example 1.6.5: Dielectric mirrors
1.7 Multiple Interference and Optical Resonators
Example 1.7.1: Resonator modes and spectral width
1.8 Goos-Hänchen Shift and Optical Tunneling
1.9 Temporal and Spatial Coherence
1.10 Diffraction Principles
A. Fraunhofer Diffraction
Example 1.10.1: Resolving power of imaging systems
B. Diffraction grating
Questions and Problems
2.1 Symmetric Planar Dielectric Slab Waveguide
A. Waveguide Condition
B. Single and Multimode Waveguides
C. TE and TM Modes
Example 2.1.1: Waveguide modes
Example 2.1.2: V-number and the number of modes
Example 2.1.3: Mode field distance (MFD)
2.2 Modal and Waveguide Dispersion in the Planar Waveguide
A. Waveguide Dispersion Diagram
B. Intermodal dispersion
C. Intramodal Dispersion
2.3 Step Index Fiber
Example 2.3.1: A multimode fiber
Example 2.3.2: A single mode fiber
Example 2.3.3: Single mode cut-off wavelength
Example 2.3.4: Group velocity and delay
2.4 Numerical Aperture
Example 2.4.1: A multimode fiber and total acceptance angle
Example 2.4.2: A single mode fiber
2.5 Dispersion in Single Mode Fibers
A. Material Dispersion
B. Waveguide Dispersion
C. Chromatic Dispersion or Total Dispersion
D. Profile and Polarization Dispersion Effects
E. Dispersion Flattened Fibers
Example 2.5.1: Material Dispersion
Example 2.5.2: Material, waveguide and chromatic dispersion
2.6 Bit-Rate, Dispersion, Electrical and Optical Bandwidth
A. Bit-Rate and Dispersion
B. Optical and Electrical Bandwidth
Example 2.6.1: Bit-rate and dispersion
2.7 The Graded Index Optical Fiber
Example 2.7.1: Dispersion in a graded-index fiber and bit-rate
2.8 Light Absorption and Scattering
A. Absorption
B. Scattering
2.9 Attenuation in Optical Fibers
Example 2.9.1: Rayleigh scattering limit
Example 2.9.2: Attenuation along an optical fiber
2.10 Fiber Manufacture
A. Fiber Drawing
B. Outside Vapor Deposition (OVD)
Example 2.10.1: Fiber drawing
Questions and Problems
3.1 Semiconductor Concepts and Energy Bands
A. Energy Band Diagrams
B. Semiconductor Statistics
C. Extrinsic Semiconductors
D. Compensation Doping
E. Degenerate and Nondegenerate Semiconductors
F. Energy Band Diagrams in an Applied Field
Example 3.1.1: Fermi levels in semiconductors
Example 3.1.2: Conductivity
3.2 Direct and Indirect Bandgap Semiconductors: E-k Diagrams
3.3 pn Junction Principles
A. Open Circuit
B. Forward Bias
C. Reverse Bias
D. Depletion Layer Capacitance
E. Recombination Lifetime
Example 3.3.1: A direct band gap pn junction
3.4 The pn Junction Band Diagram
A. Open Circuit
B. Forward and Reverse Bias
3.5 Light Emitting Diodes
A. Principles
B. Device Structures
3.6 LED Materials
3.7 Heterojunction High Intensity LEDs
3.8 LED Characteristics
Example 3.8.1: LED Output Spectrum
Example 3.8.2: LED output wavelength variations
Example 3.8.3: InGaAsP on InP substrate
3.9 LEDs for Optical Fiber Communications
Questions and Problems
4.1 Stimulated Emission and Photon Amplification
4.2 Stimulated Emission Rate and Einstein Coefficients
4.3 Optical Fiber Amplifiers
4.4 Gas Laser: The He-Ne Laser
Example 4.4.1: Efficiency of the He-Ne Laser
Example 4.4.2: Laser beam divergence
4.5 The Output Spectrum of a Gas Laser
Example 4.5.1: Doppler broadened linewidth
4.6 LASER Oscillation Conditions
A. Optical Gain Coefficient g
B. Threshold Gain gth
C. Phase Condition and Laser Modes
Example 4.6.1: Threshold population inversion for the He-Ne laser
4.7 Principle of the Laser Diode
4.8 Heterostructure Laser Diodes
Example 4.8.1: Modes in a laser and the optical cavity length
4.9 Elementary Laser Diode Characteristics
Example 4.9.1: Laser output wavelength variations
4.10 Steady State Semiconductor Rate Equation
4.11 Light Emitters for Optical Fiber Communications
4.12 Single Frequency Solid State Lasers
Example 4.12.1: DFB Laser
4.13 Quantum Well Devices
Example 4.13.1: A GaAs quantum well
4.14 Vertical Cavity Surface Emitting Lasers (VCSELs)
4.15 Optical Laser Amplifiers
4.16 Holography
Questions and Problems
5.1 Principle of the pn Junction Photodiode
5.2 Ramo's Theorem and External Photocurrent
5.3 Absorption Coefficient and Photodiode Materials
5.4 Quantum Efficiency and Responsivity
5.5 The pin Photodiode
Example 5.5.1: Operation and speed of a pin photodiode
Example 5.5.2: Photocarrier Diffusion in a pin photodiode
Example 5.5.3: Responsivity of a pin photodiode
5.6 Avalanche Photodiode
Example 5.6.1: InGaAs APD Responsivity
Example 5.6.2: Silicon APD
5.7 Heterojunction Photodiodes
A. Separate Absorption and Multiplication (SAM) APD
B. Superlattice APDs
5.8 Phototransistors
5.9 Photoconductive Detectors and Photoconductive Gain
5.10 Noise In Photodetectors
A. The pn Junction and the pin Photodiodes
Example 5.10.1: NEP of a Si pin Photodiode
Example 5.10.2: Noise of an ideal photodetector
Example 5.10.3: SNR of a Receiver
B. Avalanche Noise in the APD
Example 5.10.4: Noise in an APD
Questions and Problems
6.1 Solar Energy Spectrum
Example 6.1.1: Solar energy conversion
6.2 Photovoltaic Device Principles
Example 6.2.1: The photocurrent Iph
6.3 pn Junction Photovoltaic I-V Characteristics
Example 6.3.1: A solar cell driving a resistive load
Example 6.3.2: Open circuit voltage and illumination
6.4 Series Resistance and Equivalent Circuit
Example 6.4.1: Solar cells in parallel
6.5 Temperature Effects
6.6 Solar Cells Materials, Devices and Efficiencies
Questions and Problems
7.1 Polarization
A. State of Polarization
Example 7.1.1: Elliptical and circular polarization
B. Malus's Law
7.2 Light Propagation in an Anisotropic Medium: Birefringence
A. Optical Anisotropy
B. Uniaxial Crystals and Fresnel's Optical Indicatrix
C. Birefringence of Calcite
D. Dichroism
7.3 Birefringent Optical Devices
A. Retarding Plates
Example 7.3.1: Quartz half-wave plate
Example 7.3.2: Circular polarization from linear polarization
B. Soleil-Babinet Compensator
C. Birefringent Prisms
7.4 Optical Activity and Circular Birefringence
7.5 Electro-Optic Effects
A. Definitions
B. Pockels Effect
Example 7.5.1: Pockels Cell Modulator
C. Kerr Effect
Example 7.5.2: Kerr Effect Modulator
7.6 Integrated Optical Modulators
A. Phase and Polarization Modulation
B. Mach-Zehnder Modulator
C. Coupled Waveguide Modulators
Example 7.6.1: Modulated Directional Coupler
7.7 Acousto-Optic Modulator
Example 7.7.1: Modulated Directional Coupler
7.8 Magneto-Optic Effects
7.9 Non-Linear Optics and Second Harmonic Generation
Questions and Problems
PHYSICAL CONSTANTS
PROPERTIES OF SELECTED SEMICONDUCTORS AT 300K
SELECTED SEMICONDUCTORS
NOTATION AND ABBREVIATIONS
INDEX